FORT WAYNE METALS Turning knowledge into solutions.*

© 2020 Fort Wayne Metals Research Products Corp – All rights reserved

Stress Corrosion Testing of Mg Wire

Adam Griebel, Alexis Nicolette-Baker,

Anh Pham, Sam Friedman, Jeremy Schaffer

Updates in Bioabsorbable Metals 2020 | August 25, 2020 | Virtual

Turning knowledge into solutions."

Precision melting and integrated supply chain

Expert research and development support

Rapid prototyping to full-scale production

Accredited independent material testing services

Absorbable Wire in Medicine

Orthopedic devices (cables, screws, pins, etc.)

Absorbable Wire in Medicine

Orthopedic devices (cables, screws, pins, etc.)

Soft Fixation (staples, ligation, sutures)

Turning knowledge into solutions."

Absorbable Wire in Medicine

Orthopedic devices (cables, screws, pins, etc.) Soft Fixation (staples, ligation, sutures)

```
Stents and intraluminal scaffolds
```


Absorbable Wire in Medicine

Orthopedic devices (cables, screws, pins, etc.) Soft Fixation (staples, ligation, sutures) Stents and intraluminal scaffolds

Scaffolds

Xue et al, Biometal 11, (2019)

Fig. 1: (A) schematic of Mg 3D weave; (B) Mg alloy wire coated with HAp

FORT WAYNE METALS

Mg wire in medicine

1924

A STUDY OF MAGNESIUM WIRE AS AN ABSORBABLE SUTURE AND LIGATURE MATERIAL*

M. G. SEELIG, M.D.

ST. LOUIS

In adapting the metal for this purpose, there were several requirements to be met:

1. A wire of sufficient tensile strength to withstand the strain of sewing and tying.

2. A wire of sufficient pliability or <u>ductility</u> to withstand the flexing encountered in tying the surgeon's double knot.

3. A wire of high and uniform purity to insure corrosion taking place uniformly when in contact with blood serum.

4. A wire permitting some measure of control in the rate of absorption.

Turning knowledge into solutions."

© 2020 Fort Wayne Metals Research Products Corp – All rights reserved.

FORT WAYNE METALS

Why do we do corrosion testing?

Why do we do corrosion testing?

- Screen
 - Which alloys might work?
 - Which alloys will not work?
- Optimize
 - Which composition/process/surface works best?
- Inspect/Verify

Turning knowledge into solutions."

- How repeatable is it?
- Did this batch meet our requirements?
- Answer fundamental questions
 - What factors influence corrosion, and how can we control them?
 - What is the corrosion mechanism?
- Predict in vivo performance?

Corrosion Assessment

- Electrochemical (PDP, EIS)
- Immersion
- Stress Corrosion
- Corrosion Fatigue

Corrosion Assessment

- Electrochemical (PDP, EIS)
- Immersion
- Stress Corrosion
- Corrosion Fatigue

© 2019 Fort Wayne Metals Research Products Corp - All rights reserved.

Static strain-corrosion

Static strain-corrosion

Static strain-corrosion

© 2020 Fort Wayne Metals Research Products Corp – All rights reserved.

FORT WAYNE METALS

Strain-controlled corrosion: Mg (WE43)

0 hrs

96 hrs

© 2020 Fort Wayne Metals Research Products Corp – All rights reserved.

ORT WAYNE METALS

A corrosion testing method that can <u>efficiently</u> and <u>repeatably</u> assess corrosion and stresscorrosion behavior of fine Mg wires

Stress-Corrosion System Design

- 6 horizontal wires through 150 mm test chamber
- Stainless steel deadweights
- Electrical contact break detection system
- Media
 - 5L of Modified Hank's Solution
 - 1.6 g/L sodium bicarbonate
 - 0.265 g/L calcium chloride dihydrate
 - pH 7.4 +/- 0.1
 - Buffered with CO₂ bubbling
 - 37 +/- 1°C
 - 200 mL/min flow
- Data Outputs:
 - Time-to-failure

Turning knowledge into solutions.*

Post-corrosion cross-sectional analysis

© 2020 Fort Wayne Metals Research Products Corp – All rights reserved.

Stress-Corrosion System Design

Turning knowledge into solutions.*

Test Plan

Turning knowledge into solutions."

- Case 1: Compare <u>alloys</u> and <u>process conditions</u> at a given stress
- Case 2: Investigate <u>influence of stress</u> on corrosion rate at a given time
- Case 3: Generate <u>stress-life curve</u> for a given alloy and evaluate <u>corrosion morphology</u>

Alloys Investigated

Turning knowledge into solutions.*

<u>Name</u>	Mg	Li	<u>Zn</u>	<u>Ca</u>	<u>Y</u>	Nd	<u>Zr</u>	<u>Mn</u>	Fe	<u>Cu</u>	<u>Ni</u>
LZ21	96.0	2.0	1.21	0.35	< 0.01	< 0.01	< 0.01	0.4	0.004	< .001	< .001
WE43	92.8	< 0.01	< 0.01	< 0.01	3.9	3.0	0.3	< .01	0.004	0.008	0.001
L4	96.4	3.5	< 0.01	0.01	< 0.01	< 0.01	< 0.01	0.03	0.004	0.008	<.001
ZX10	98.6	< 0.01	1.03	0.26	< 0.01	< 0.01	< 0.01	0.12	< .001	0.001	< .001

Wire Production

- VIM, cast to ø50 mm
- Extruded to ø12.7 mm
- Wire drawing to Ø0.24, 0.25 mm

FORT WAYNE METALS

© 2020 Fort Wayne Metals Research Products Corp – All rights reserved.

FORT WAYNE METALS

Tensile Properties

© 2020 Fort Wayne Metals Research Products Corp – All rights reserved.

FORT WAYNE METALS

Tensile Properties

Mg wire tensile

• 127 mm GL, 20%/min, 22°C

Case 1: Comparing Alloys

• LZ21, WE43, L4, ZX10

Turning knowledge into solutions.*

- 0.24 mm, 110 MPa initial stress, Both Cold Worked and Annealed conditions

Case 1: Comparing Alloys

• LZ21, WE43, L4, ZX10

Turning knowledge into solutions.*

- 0.24 mm, 110 MPa initial stress, Both Cold Worked and Annealed conditions

Case 1: Comparing Alloys

• LZ21, WE43, L4, ZX10

Turning knowledge into solutions.*

- 0.24 mm, 110 MPa initial stress, Both Cold Worked and Annealed conditions

Case 2: Influence of Stress

- 0.25 mm ZX10, cold worked, 16 hours
- Stress = 0, 75, 150 MPa
- Analysis:
 - Collect 5-6 cross-sections (mount/polish)
 - Measure remaining metal area and maximum penetration in ImageJ
 - Calculate Average Penetration and Pitting Factor.

Case 2: Influence of Stress

- 0.25 mm ZX10, cold worked, 16 hours
- Stress = 0, 75, 150 MPa

Case 2: Influence of Stress

- 0.25 mm ZX10, cold worked, 16 hours
- Stress = 0, 75, 150 MPa

Stress does not increase corrosion rate(?)

ORT WAYNE METALS

Case 3: Stress-Life Curve

- 0.25 mm ZX10, cold worked
- Held at initial stresses of 50-200 MPa
- Outputs:
 - Survival time
 - Cross-sectional analysis

Case 3: Stress-Life Curve

• 0.25 mm ZX10, cold worked

Case 3: Stress-Life Curve

• 200 MPa, 40.8 hours

Case 3: Stress-Life Curve

• 0.25 mm ZX10, cold worked

Case 3: Stress-Life Curve

• 125 MPa, 85.6 hrs

Case 3: Stress-Life Curve

• 0.25 mm ZX10, cold worked

Case 3: Stress-Life Curve

• 100 MPa, 100.8 hrs

Case 3: Stress-Life Curve

• 0.25 mm ZX10, cold worked

Case 3: Stress-Life Curve

• 75 MPa, 55 hrs

Turning kno

Case 3: Residual Area

Turning knowledge into solutions.*

Case 3: Pitting Factor

Case 3: Pitting Factor

Case 3: Pitting Factor

Turning knowledge into solutions.*

Case 3: Pitting Factor

How does this aid in the development of absorbable devices?

© 2020 Fort Wayne Metals Research Products Corp – All rights reserved.

FORT WAYNE METALS

Mechanical Transfer

© 2020 Fort Wayne Metals Research Products Corp – All rights reserved.

Actual loading depends on device

Future work

- Case 1: Comparing Alloys
 - Confounding influence of strength
 - Hold constant time (pre-failure)
- Case 2: Does stress increase corrosion?
 - Longer duration (e.g. 36 hrs)
 - Additional alloys
- Case 3: Stress-Life curve
 - Additional alloys
 - Higher N
- Additional Studies

Turning knowledge into solutions."

- Microstructure vs corrosion (grain size, secondary phases)
- Effect of impurities (Fe/Ni/Cu)
- Surface/Coatings
- Mechanical strength after set time

Conclusions

- A simple stress-corrosion system was designed for testing of Mg alloy wires.
- The method

Turning knowledge into solutions.

- Effectively distinguishes Mg alloys and process conditions
- Enables corrosion uniformity assessment
- Will allow for efficient corrosion checks in a manufacturing environment

Thank you! See you in 2021! **Acknowledgements FWM Staff** Adam Grimme Nate Romine **Tyler Ransom Stephen Mitchell** Joe Buchan

